Косметология. Прически и макияж. Маникюр и педикюр. Фитнес

Химический потенциал. Свободная энергия Гиббса и Гельмгольца

Если процесс протекает самопроизвольно, то внутренняя энергия (энтальпия) должны уменьшаться, а энтропия увеличиваться. Для сравнения этих величин их надо выразить в одних единицах, а для этого ΔS умножить на T . В этом случае имеем ΔН – энтальпийный фактор и Т ΔS - энтропийный фактор.

В ходе реакции частицы стремятся к объединению, что ведет к уменьшению энтальпии (ΔН < 0), с другой стороны – должна возрастать энтропия, т.е. увеличиваться число частиц в системе (Т ΔS > 0). "Движущая сила" реакции определяется разностью между этими величинами и обозначается ΔG.

ΔG p , T = ΔH T ΔS

и называется изменением энергии Гиббса (изобарно-изотермический потенциал).

Энергия Гиббса - это часть энергетического эффекта реакции, которую можно превратить в работу, поэтому ее называют свободной энергией. Это тоже термодинамическая функция состояния и, следовательно, для реакции

b B + d D =l L + m M,

энергию Гиббса химической реакции можно рассчитать как сумму энергий Гиббса образования продуктов реакции за вычетом энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов по формуле:

ΔG = l Δ f G L + m Δ f G M – d Δ f G D – b Δ f G B .

где Δ f G энергия Гиббса образования веществ .

Энергия Гиббса образования веществ это изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых при 298 К.

Энергия Гиббса образования простых веществ Δ f G принимается равной нулю. Если образующееся вещество и исходные простые вещества находятся в стандартных состояниях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества Δ f G 0 . Ее значения приводятся в справочниках.

Полученное значение ΔG является критерием самопроизвольного течения реакции в прямом направлении, если ΔG < 0. Химическая реакция не может протекать самопроизвольно в прямом направлении, если энергия Гиббса системы возрастает, т.е. ΔG > 0. Если ΔG = 0, то реакция может протекать как в прямом, так и в обратном направлениях, т.е. реакция обратима.

Направление химических реакций зависит от их характера. Так, условие ΔG < 0 соблюдается при любой температуре для экзотермических реакций (ΔН < 0), у которых в ходе реакции возрастает число молей газообразных веществ, и, следовательно, энтропия (ΔS > 0). У таких реакций обе движущие силы (ΔН ) и (Т ΔS ) направлены в сторону протекания прямой реакции и ΔG < 0 при любых температурах. Такие реакции являются необратимыми.

Наоборот, эндотермическая реакция (ΔН > 0), в результате которой уменьшается число молей газообразных веществ (ΔS < 0) не могут протекать самопроизвольно в прямом направлении при любой температуре, т.к. всегда ΔG > 0.


Если в результате экзотермической реакции (ΔН < 0) уменьшается число молей газообразных веществ и, соответственно, энтропия (ΔS < 0), то при невысокой температуре ΔН >T ΔS и реакция возможна в прямом направлении (ΔG < 0). При высоких температурах ΔH < T ΔS и прямая реакция самопроизвольно протекать не может (ΔG > 0), а обратная реакция возможна.

Для определения температуры равновесия можно воспользоваться условием:

Т р = ΔН S ,

где Т р – температура, при которой устанавливается равновесие, т.е. возможность протекания прямой и обратной реакций.

Если в результате эндотермической реакции (ΔН > 0) увеличивается число молей газообразных веществ и энтропия системы (ΔS > 0), то при невысоких температурах, когда ΔН >Т ΔS , самопроизвольно прямая реакция идти не может (ΔG > 0), а при высоких температурах, когда ΔН < T ΔS , прямая реакция может протекать самопроизвольно (ΔG < 0).

Связь между ΔG и ΔG 0 выражается уравнением изотермы Вант-Гоффа, которая для реакции

b B + d D = l L + m M

записывается в виде:

либо в виде:

где - относительные парциальные давления соответствующих веществ; концентрации соответствующих растворенных веществ.

Итак, энергия Гиббса позволяет определить возможность протекания реакции расчетным путем, не прибегая к дорогостоящим и длительным экспериментам.

В изохорно-изотермических условиях свободная энергия называется энергией Гельмгольца или изохорно-изотермическим потенциалом и равна

Она характеризует направление и предел самопроизвольного течения химической реакции при изохорно-изотермических условиях, которое возможно при ΔF < 0.


5 Распределение Максвелла для скоростей.

МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ

распределение по скоростям молекул (ч-ц) макроскопич. физ. системы, находящейся в статистич. равновесии, при условии, чтодвижение молекул подчиняется законам классич. механики (пример - классический идеальный газ). Установлено Дж. Максвеллом в 1859. Согласно М. р., вероятное число молекул в ед. объёма f(v), компоненты скоростей к-рых лежат в интервалах от vx до vx+dvx, от vy до vy+dvy и от vz до vz+dvz, определяются ф-цией распределения Максвелла

где т - масса молекулы, n - число молекул в ед. объёма. Отсюда следует, что число молекул, абс. значения скоростей к-рых лежат в интервале от v до v+dv, также называемое М. р., имеет вид:

Оно достигает максимума при скорости vb=?(2kT/m) , наз. Наиболее вероятной скоростью. Для мол. водорода при T=273 К vb=1506 м/с. При помощи М. р. можно вычислить ср. значение любой ф-ции от скорости молекулы: ср. скорость vb (рис.).

При возрастании темп-ры максимум М. р. (значение vb) смещается к более высоким темп-рам. М. р. не зависит от вз-ствия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание. Оно справедливо также и для броуновских ч-ц (см. БРОУНОВСКОЕ ДВИЖЕНИЕ), взвешенных в жидкости или газе. М. р. может быть получено из канонического распределения Гиббса для классич. системы интегрированием по всем координатам ч-ц, т. к. в этом случаераспределение по скоростям не зависит от распределения по импульсам. М. р. есть решение кинетического уравнения Больцмана для частного случая статистич. равновесия.

М. р. было подтверждено экспериментально нем. физиком О. Штерном (1920) в опытах с мол. пучками.

Физический энциклопедический словарь. - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ

- распределение по скоростям частиц (молекул) макроскопич. физ. системы, находящейся в статистич. равновесии, в отсутствие внеш. поля при условии, что движение частиц подчиняется законам классич. механики. Установлено Дж. К. Максвеллом (J. С. Maxwell) в 1859. Согласно M. р., вероятное число частиц в единице объёма, компоненты скоростей к-рых лежат в интервалах от V x до , от до и от до , равно , где

Ф-ция распределения Максвелла по скоростям, n - число частиц в единице объёма, т - масса частицы, T - абс. темп-ра. Отсюда следует, что число частиц, абс. значения скоростей к-рых лежат в интервале от и до u +du, равно

Это распределение наз. M. р. по абс. значениям скоростей. Ф-ция F(V )достигает максимума при скорости наз. наиб, вероятной скоростью. Для молекул H 2 при T - 273К u B ~ 1500 м/с. При помощи M. р. можно вычислить ср. значение любой ф-ции от скорости молекул: ср. квадрат скорости ср. квадратичную скорость ср. арифметич. скорость к-рая в

Раза больше u B (рис.).

M. р. по относит, скоростям молекул и имеет вид

откуда следует, что ср. относит, скорость молекул равна

M. р. не зависит от взаимодействия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание.

В случае многоатомных молекул M. р. имеет место для постунат. движения молекул (для скорости их центра тяжести) и не зависит от внутримолекулярного движения и вращения даже в том случае, когда для них необходимо квантовое описание. M. р. справедливо для броуновского движения частиц, взвешенных в жидкости или газе.

Максвелл использовал для обоснования M. р. детального равновесия принцип. M. р. можно получить из канонического распределения Гиббса для классич. системы, интегрируя по всем пространственным координатам и по всем скоростям, кроме одной, т. к. в классич. случае распределение по скоростям не зависит от распределения по пространственным координатам. M. р. является частным решением кинетического уравнения Больцмана для случая статистич. равновесия в отсутствио впеш. полей. M. р. обращает в нуль интеграл столкновения этого ур-ния, выражающего баланс между прямыми и обратными столкновениями. Во внеш. потенциальном поле имеет место распределение Максвелла - Больцмана (см. Болъцма-на распределение). M. р.- предельный случай Базе - Эйнштейна распределения и Ферми - Дирака распределения в случае, когда можно пренебречь явлением квантового вырождения газа. M. р. подтверждено экспериментально О. Штерном (О. Stern) в 1920 в опытах с молекулярными пучками от источника, помещённого внутри вращающейся цилиндрич. поверхности, и позднее (1947) в опытах И. Эстермана (I. Estermann), О. Симпсона (О. Simpson) и Штерна по свободному падению молекул пучка под действием силы тяжести.


6 Удельная теплоемкость твердых тел.

Наиболее важными способами поглощения тепловой энергии твердым телом являются:

Увеличение интенсивности колебаний атомов;

Увеличение энергии поступательного движения электронов;

Увеличение вращательной энергии молекул.

Первый механизм присущ всем твердым тела. Этот механизм наиболее важен из всех трех. Другие эффекты могут преобладать только в узких температурных интервалах.

Общая энергия твердого тела, как было показано в предыдущей главе, складывается из двух слагаемых. Одним из них является тепловая энергия, другим − энергия, которой обладают твердые тела при абсолютном нуле температуры. Сумма этих величин является внутренней энергией . Эта величина может быть точно определена из эксперимента. Однако исторически сложилось так, что большее внимание уделялось величине теплоемкости твердого тела.

Теплоемкость тела при постоянном объеме (V = const) или постоянном давлении (p = const) определяется как производная от энергии тела по температуре. При изучении твердых тел из эксперимента обычно определяется теплоемкость при постоянном давлении , однако более фундаментальной величиной в физике твердого тела являетсятеплоемкость при постоянном объеме , связанная с соотношением

Для характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (поскольку работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

∆F=∆U-T∆S

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

G=U+PV-TS=H-TS

∆G=∆H-T∆S

Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - через давление p и температуру T:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь - химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записаны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытых системах:

∆G<0, dG<0;

∆F<0,dF<0.

Константа равновесия

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С, парциальные давления P или мольные доли X реагирующих веществ. Для некоторой реакции

соответствующие константы равновесия выражаются следующим образом:

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. Выражение для константы равновесия для элементарной обратимой реакции может быть выведено из кинетических представлений.

Приняв, что V 1 = V 2 , можно записать:

Таким образом, константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Направление любого процесса определяется соотношением энтальпийного ∆ r Н и энтропийного Т r S факторов реакции. Самопроизвольному протеканию реакции способствуют значение ∆ r Н Т < 0 (стремление системы к упорядоченности, сопровождаемое уменьшением ее внутренней энергии) и значение ∆ r S Т > 0 (стремление системы к хаотичности, неупорядоченности как более термодинамически вероятному состоянию). Функциями состояния системы, учитывающими совместное влияние этих факторов, являются энергия Гиббса, или свободная энергия G = H TS , и энергия Гельмгольца F = U ТS.

Уменьшение энергии Гиббса химической реакции

r G Т = (∆ r H Т T r S Т ) < 0 (1.7)

является однозначным критерием возможности самопроизвольного протекания реакции в прямом направлении в изобарно-изотермических условиях, поскольку либо оба фактора действуют в пользу процесса

(∆ r Н < 0 и ∆ r S > 0), либо действующий в пользу процесса фактор является преобладающим и определяет знак ∆ r G Т и направление процесса в целом. Соответственно уменьшение энергии Гельмгольца системы

r F Т = (∆ r U Т T r S Т )< 0 (1.8)

является критерием возможности самопроизвольного протекания процесса в изохорно-изотермических условиях. Соотношение между ∆ r G и ∆ r F такое же, как между ∆ r H и ∆ r U , то есть они отличаются на величину работы расширения:

r G Т – ∆ r F Т = p V = ∆νRT. (1.9)

Если система изолирована, то самопроизвольно в ней могут протекать процессы только в сторону увеличения энтропии , то есть ∆ r S Т > 0, поскольку тепловой эффект в таких системах равен нулю. Это неравенство есть следствие второго закона термодинамики для изолированных систем и является критерием возможности самопроизвольного протекания процессов в таких системах.

Абсолютное значение энергий Гиббса и Гельмгольца определить нельзя, так как невозможно определить абсолютное значение внутренней энергии, поэтому для расчетов (аналогично энтальпии образования – см. выше) используют энергии образования веществ .

Энергией Гиббса образования вещества f G i называется энергия Гиббса реакции образования 1 моля i -го вещества из простых веществ, устойчивых в данных условиях. Энергия Гиббса образования простых веществ, устойчивых в данных условиях, принимается равной нулю. Если при этом все вещества находятся в стандартном состоянии, то энергия Гиббса реакции образования вещества называется стандартной энергией Гиббса образования вещества f G 0 i . Величины ∆ f G 0 298 , i табулированы (см. табл. 1 Приложения).

Энергию Гиббса химической реакции можно рассчитать двумя способами:

1) как изменение функции состояния системы по разности суммарной энергии образования продуктов реакции и суммарной энергии образования исходных веществ:

Δ r G T = ∑ν i Δ f G T , i продуктов − ∑ν j Δ f G T , j исх веществ; (1.10)

2) по уравнению

Δ r G T = ∆ r H T T r S T . (1.11)

Если все исходные вещества и продукты реакции находятся в стандартных состояниях, то по формулам (1.10), (1.11) рассчитывают стандартную энергию Гиббса реакции ∆ r G 0 T .

Связь между Δ r G T и∆ r G 0 T выражается уравнением изотермы Вант Гоффа ,которая для реакции a A(г) + b B(г) + d D(к) = e E(г) + f F(г) имеет вид:

Δ r G Т = r G 0 Т + RT ln(p e E p f F /p a A p b B), (1.12)

где р i – относительные парциальные давления (см. выше) соответствующих газообразных компонентов реакции. Подчеркнем, что в уравнение (1.12) входят только относительные парциальные давления газообразных веществ (вещество D(к) учитывается только при расчете ∆ r G 0 Т ). Если относительные давления всех газов равны 1 (стандартное состояние), то Δ r G Т = ∆ r G 0 Т.

Значение ∆ r G 0 Т для любой температуры Т можно в общем случае рассчитать с использованием справочных данных по уравнению:

r G 0 Т = ∆ r H 0 Т − T r S 0 Т = ∆ r H 0 298 + ∫ ∆ r С 0 p dT + Т r S 0 298 + Т ∫ (∆ r С 0 p /T )dT (1.13)

Для расчетов, не требующих высокой точности, можно в первом приближении принять ∆ r С 0 p = 0 и ∆ r Н 0 Т = ∆ r Н 0 298 и ∆ r S 0 T = ∆ r S 0 298 (см. выше). Тогда для заданной Т

r G 0 Т = ∆ r H 0 298 − T r S 0 298 (1.14)

Для процесса, идущего при T = const и V = const, имеем изотерму реакции в виде

Δ r F Т = r F 0 Т + RT ln(c e E c f F /c a A c b B), (1.15)

где c i – относительные концентрации соответствующих компонентов реакции, численно равные молярным концентрациям, так как c i = с i (моль/л)/1(моль/л).

Если реакции протекают в растворах или в твердых фазах, то в первом приближении ∆V = 0. Тогда, как следует из уравнения (1.9), ∆ r G Т = ∆ r F Т , поэтомудля реакций в идеальных растворах изотерму Вант Гоффа можно записать в виде

Δ r G Т = ∆ r G 0 Т + RT ln(c e E c f F /c a A c b B). (1.16)

(Для реальных растворов вместо молярных концентраций, строго говоря, следует использовать активности − см. )

Пример 7. Рассчитайте стандартную энергию Гиббса химической реакции С(к) + СО 2 (г) = 2СО(г) при 298 К и при 1000 К, считая энтальпию и энтропию реакции не зависящими от температуры. Сделайте вывод о возможности самопроизвольного протекания этой реакции при указанных температурах и стандартных состояниях всех компонентов.

Решение. Учитывая условие задачи, для расчета применим приближенную формулу (1.14) и данные, полученные в примерах 2 и 6.

r G 0 298 = 172,5 – 298· 175,66·10 −3 = 120,15 кДж, то есть ∆ r G 0 298 > 0;

r G 0 1000 = 172,5 – 1000· 175,66· 10 −3 = −3,16 кДж, то есть ∆ r G 0 1000 < 0.

Таким образом, при 298 К и стандартных состояниях веществ самопроизвольное протекание указанной реакции в прямом направлении невозможно (энтальпийный фактор не способствует самопроизвольному протеканию прямой реакции и определяет знак энергии Гиббса реакции при низких температурах). При высоких температурах определяющим становится энтропийный фактор реакции, он определяет отрицательное значение энергии Гиббса реакции при 1000 К и, следовательно, возможность самопроизвольного протекания реакции при этой температуре и стандартных состояниях компонентов.

Пример 8. Определите, при каком соотношении парциальных давлений газообразных компонентов реакции С(к) + СО 2 (г) = 2СО(г) возможно ее протекание в прямом направлении при 298 К?

Решение. Возможность самопроизвольного протекания данной реакции в прямом направлении при 298 К определяется неравенством Δ r G 298 < 0, в котором энергия Гиббса реакции рассчитывается по уравнению изотермы Вант Гоффа (1.12). Имеем: Δ r G 298 =[∆ r G 0 298 + RT ln(p 2 CO /p CO 2)] < 0. Подставляя вместо ∆ r G 0 298 , величину, найденную в Примере 7, получаем неравенство:

120,15 + 8,31·10 −3 ·298 ln(p 2 CO /p CO 2) < 0.

Найдем соотношение давлений СО и СО 2 , при котором это неравенство выполняется. Имеем: ln(p 2 CO /p CO 2) < −48,5, откуда p 2 CO /p CO 2 < 10 −21 .

Пример 9. Определите температурную область самопроизвольного протекания реакции С(к) + СО 2 (г) = 2СО(г) при стандартных состояниях компонентов.

Решение. Реакция может протекать самопроизвольно при стандартных состояниях компонентов в определенной области температур, для которых ∆ r G 0 Т < 0.Чтобы найти эту область температур нужно определить граничную температуру (температуру равновесия), при которой значение ∆ r G 0 Т меняет знак, то есть необходимо решить неравенство относительно Т :

r G 0 Т = ∆ r H 0 298 + ∫ Т 298 ∆ r С 0 p dT + Т r S 0 298 + Т Т 298 (∆ r С 0 p /T )dT < 0.

Если пренебречь зависимостью ∆ r H 0 и ∆ r S 0 от температуры, то граничную температуру (температуру равновесия) можно определить из приближенного неравенства ∆ r G 0 Т = ∆ r H 0 298 − T r S 0 298 < 0. Подставляя в это выражение значения ∆ r H 0 298 и ∆ r S 0 298 , рассчитанные в примерах 2 и 6, получаем: (172,5 – Т · 175,66·10 −3) < 0. Откуда Т > 982 К. Верхним пределом искомой температурной области является предел существования наименее устойчивого компонента реакции, который находится из справочных данных, например .

Вещество Температурный интервал, К

Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окружающей средой) реализуются сравнительно редко. Поэтому представляется важным сформулировать подобного рода критерии для закрытых систем, где возможен обмен энергией с окружающей средой. Для этого нам потребуется определить две новые функции состояния – энергию Гельмгольца и энергию Гиббса.

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 7а) и уравнения (II, 17а), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

dW = dW равн. = TdS – dU (III, 2)

Для неравновесного процесса:

dW < TdS – dU (III, 3)

Сравнивая уравнения (III, 2) и (III, 3), получаем:

dW равн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = –dU и W макс. = – (U 2 – U 1) (III, 4)

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной Т уравнение (III, 2), получаем:

W макс. = T (S 2 – S 1) – (U 2 – U 1) (III, 5)

W макс. = (U 2 – TS 2) +(U 1 – TS 1 ) (III, 6)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 6) обозначение

F º U – TS (III, 7)

получаем (при T = const)

W макс. = – F 2 + F 1 = – (F 2 – F 1) = –DF (III, 8)

где F – функция состояния, называемая энергией Гельмгольца (в настоящее время для обозначения энергии Гельмгольца также используется символ А ). Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей – свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии – свободная энергия, которую система отдает вовне при T = const , может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии – связанная энергия – при изменении системы, если Т = const , не дает работы, а переходит только в теплоту.


Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T const ), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III, 7):

dF º dU TdS SdT (III, 9)

Сопоставив это уравнение с уравнениями (III, 2) и (III, 3), получим в общем виде:

dF £ -SdT – dW (III, 10)

Откуда при Т = const

(dF) T £ –dW (III, 11)

F 2 – F l = DF < W; –(F 2 – F 1 ) > W (III, 12)

Выражение (III, 12) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения (dW = PdV), то из уравнения (III, 10) получаем:

dF = -SdT – PdV (III, 13)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const , а также при условии отсутствия всех видов работы (dW = 0) , получаем из уравнения (III, 10):

(F ) V, T £ 0 (III, 13а)

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры – легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, уменьшается при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в равновесное состояние.

Свободная энергия Гиббса - это величина, показывающая изменение энергии в ходе химической реакции и дающая ответ на принципиальную возможность химической реакции; это термодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - через давление p и температуру T:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь μ - химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Свобо́днаяэне́ргияГельмго́льца (или просто свобо́дная эне́ргия ) - термодинамический потенциал, убыль которого в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Свободная энергия Гельмгольца для системы с постоянным числом частиц определяется так:

Где U - внутренняя энергия, T - абсолютная температура, S - энтропия.

Отсюда дифференциал свободной энергии равен:

Видно, что это выражение является полным дифференциалом относительно независимых переменных T и V . Поэтому часто свободную энергию Гельмгольца для равновесного состояния выражают как функцию .

Для системы с переменным числом частиц дифференциал свободной энергии Гельмгольца записывается так:

где μ - химический потенциал, а N - число частиц в системе. При этом свободная энергия Гельмгольца для равновесного состояния записывается как функция .

14. Энергия Гельмгольца и максимальная работа.

Энергия Гиббса и максимальная полезная работа.

Энергия Гиббса как термодинамический критерий реакционной способности химической системы.

Движущей силой химических процессов, протекающих при постоянных давлении и температуре, является изобарно-изотермический потенциал, называемый энергией Гиббса и обозначаемый G . Изменение энергии Гиббса в химическом процессе определяется соотношением

ΔG = ΔH –TΔS, (3.16)

где ΔG – изменение энергии Гиббса химического процесса; ΔH – изменение энтальпии химического процесса; ΔS – изменение энтропии химического процесса; Т – температура, К.

Уравнение (3.16) может быть представлено в следующем виде:

ΔH = ΔG + TΔS. (3.17)

Смысл уравнения (3.17) в том, что часть теплового эффекта реакции расходуется на совершение работы (ΔG), а часть рассеивается в окружающую среду (TΔS).

Энергия Гиббса является критерием принципиальной возможности самопроизвольного протекания реакции. Если в ходе реакции энергия Гиббса уменьшается, то процесс может протекать в данных условиях самопроизвольно:

ΔG < 0. (3.18)

Процесс в данных условиях неосуществим, если

ΔG > 0. (3.19)

Выражения (3.18) и (3.19) одновременно означают, что обратная реакция не может (3.18) или может (3.19) протекать самопроизвольно.

Реакция является обратимой, т.е. может протекать и в прямом, и в обратном направлениях, если

Уравнение (3.20) является термодинамическим условием химического равновесия.

Соотношения (3.18) –(3.20) применимы также к фазовым равновесиям, т.е. к случаям, когда в равновесии находятся две фазы (агрегатных состояния) одного и того же вещества, например лед и жидкая вода.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!